2700, 2701, 2750
 Multimeter/Data Acquisition/ Switch Systems

Integra Series systems $(2700,2701,2750)$ combine precision measurement, switching, and control in a single, tightly integrated enclosure for either rack-mounted or benchtop applications. These cost-effective, high performance test platforms offer affordable alternatives to separate DMMs and switch systems, dataloggers/recorders, plug-in card data acquisition equipment, and VXI/PXI systems. The Integra Series plug-in switching and control modules offer unmatched flexibility and testing efficiency for a wide range of industries and applications. System builders can create test solutions with a combination of channel count, cost per channel, and system performance unmatched by any other single-box measurement system. The input modules provide the flexibility to vary the channel count from 20 to 200 (2-pole), apply a stimulus to the device under test, route signals, control system components, and make precision measurements with up to 14 functions. Robust digital I/O capabilities can be used for triggering, handshaking with other automation equipment, and alarm limit outputs. Scan rates of more than 500 channels/second (up to 3500 readings/second) increase test productivity.

- Combines functions of DMM, switch system, and datalogger
- True 612-digit (22-bit) resolution
- Choice of 12 switch/control plug-in modules
- Up to 200 differential input channels (with 300V isolation) for measurement and control
- Convenient front panel inputs
- Free TestPoint start-up software
- Free LabVIEW, LabWindows/ CVI, Visual Basic, C/C++, and TestPoint drivers (IVI style)
- Ethernet, GPIB, RS-232 communications capabilities
- Optional ExceLINX-1A datalogging software

Fast Setup and Operation

The Integra systems are fully integrated, off-the-shelf measurement and control systems. Their DMM-like interfaces make it easy for users to collect data and/or perform troubleshooting within minutes of installation and startup. Once sensor or DUT leads are hooked to the instrument's input, use the front panel controls to select the measurement function, range, filtering, scaling, trigger source, scanning sequence, alarms, and more. The TestPoint runtime start-up software included with the Integra systems makes it easy to configure and use the system in a graphical "point-and-click" environment. This gives developers the basic tools needed to create a simple application without writing program code. If the application demands greater functionality, this free runtime can be modified with the TestPoint software application package (sold separately).

The Advantage of Integrated Design

The Integra systems offer a variety of advantages over existing solutions for ATE and data acquisition applications. For example, their flexible modular architecture and integrated measurement, switching, and control capabilities save rack space by reducing the number of separate instruments needed. This design also simplifies expanding the system as the number of channels grows or re-purposing it as new test requirements evolve. Integrated signal conditioning, scaling, stimulus, filtering and I/O capabilities eliminate the need for external circuitry when designing and building data acquisition systems. The Integra systems offer accuracy and repeatability superior to plug-in data acquisition boards, while providing faster test times than typical DMM/switch systems. This makes it possible to combine higher test yields with higher test throughput.

Ethernet

The Model 2701 offers a 10/100 BaseT Ethernet connection for high speed and long distance communication between a computer and a virtually infinite number of instruments. Any PC with an Ethernet port can connect to a single Model 2701

ACCESSORIES AVAILABLE		
ExceLINX-1A	Excel Add-In Software for 2700, 2701, and 2750 Instruments	
2750-321A	Extra slot cover	
7788	50-Pin D-Shell Connector Kit (2 each)(for Models 7703, 7705 Modules w/D-sub Connectors)	
7789	50-Pin/25-Pin D-Shell Kit (1 each)	
7790	50-Pin Male, 50-Pin Female and 25-Pin Male IDC D-Shell Connector Kit (1 each) (Ribbon Cable not Included)	
77797	Calibration Extender Board (for Model 2750)	
$7705-$ MTC-2	50-Pin Male to Female D-Sub Cable, 2m	
$7707-$ MTC-2	25-Pin Male to Female D-Sub Cable, 2m	

2700, 2701, 2750

Ordering Information

2700 DMM, Data Acquisition, Datalogging System w/2 Slots
2701 DMM, Data Acquisition, Datalogging System w/2 Slots and Ethernet Support
2750 DMM, Data Acquisition, Switching, Datalogging System w/5 Slots

These products are available with an Extended Warranty.

Accessories Supplied

TestPoint runtime start-up software; LabVIEW, LabWindows/ CVI, Visual Basic, C/C++, and
TestPoint drivers; manual; and
Model 1751 Safety Test Leads.

Built-in measurement functions include:

- DCV •ACV •DCI •ACI
- Resistance (2- or 4-wire, offset compensation selectable)
- Dry circuit ohms (20 mV clamp) 2750 only
- Temperature (with thermocouples, RTDs, or thermistors)
- Frequency/Period
- Continuity

TYPICAL APPLICATIONS

- Production test of electronic products and devices
- Accelerated stress testing (AST)
- Process monitor and control
- Device characterization/R\&D
- Low ohms, multichannel measurements

Multimeter/Data Acquisition/ Switch Systems

in a point-to-point configuration, to multiple Model 2701s through a hub, or to multiple Model 2701s distributed on a network.

The Model 2701 Ethernet port uses the industry-standard TCP/IP socket interface. This provides data rates up $100 \mathrm{Mbits} / \mathrm{sec}$. and allows the instrument to be located up to 100 meters from the nearest computer or network hub in hardwired systems and miles in wireless Ethernet systems. The maximum distances between a control PC and the instruments are limited only by the size of the network. The instrument also provides a built-in diagnostic web page for easy remote access to the Model 2701. Entering the instrument's IP address in the URL line of Microsoft Internet Explorer ${ }^{\circledR}$ will allow communication with and control of the Model 2701. This Web page allows users to read and set network parameters, such as IP address, subnet mask, gateway, MAC address, and calibration dates, and to send commands to and query data from the Model 2701.

Temperature Capabilities

Integra Series mainframes support three major types of temperature sensors with built-in signal conditioning and 300 V isolation: thermocouples, RTDs, and thermistors. To begin using a sensor, simply hook it up and the instrument does the rest. If a thermocouple is broken or disconnected, the instrument will alert the operator. The mainframes also support three methods for cold-junction compensation (CJC): automatic (built-in), external (built-in), and simulated.

Install up to five input modules in the 2750 mainframe (or up to two in the 2700 and 2701 mainframes). All switch/ control modules are fully enclosed in impact-resistant plastic for exceptional ruggedness. Three connector alternatives simplify connecting the modules to DUTs. Rugged D-sub connectors allow quick, secure connections and are especially convenient when performing routine maintenance or when the system is installed in a rack. IDC ribbon cable adapters are supplied with the Model 7701, 7707, and 7709 modules for fast, uncomplicated hookups in production test and process monitoring applications. Oversize screw-terminal connectors simplify setup in applications that require the greatest connection flexibility. Additional D-sub and IDC ribbon cable connector kits and pre-wired cable assemblies are sold separately.

2700, 2701, 2750

Ordering Information

7700 20-Channel Differential Multiplexer Module with up to 50 MHz Bandwidth w/Automatic CJC and Screw Terminals
7701 32-Channel Differential Multiplexer Module with a 25- and 50-Pin Female D Connector. Supplied with Male IDC Ribbon Cable Connectors
7702 40-Channel Differential Multiplexer Module w/Screw Terminals
7703 32-Channel High Speed, Differential Multiplexer Module with 2 50-Pin Female D Connectors. Includes 2 Mating Connectors
7705 40-Channel Single-Pole Control Module with 2 50-Pin Female D Connectors. Includes 2 Mating Connectors.
7706 All-in-One I/O Module: 20Channel Differential Multiplexer w/Automatic CJC, 16 Digital Outputs, 2 Analog Outputs, a Counter/Totalizer, and Screw Terminals
7707 32-Channel Digital I/O w/10-Channel Differential Multiplexer Module with a 25Pin Female and 50-Pin Male D Connectors. Supplied with Mating IDC Ribbon Cable Connectors
7708 40-Channel Differential Multiplexer Module w/Automatic CJC and Screw Terminals
7709 6x8 Matrix Module with 25and 50-Pin Female D Connectors. Supplied with Male IDC Ribbon Cable Connectors
7710 20-Channel Solid-State/Long Life Differential Multiplexer w/Automatic CJC and Screw Terminals
7711 2GHz 50Ω RF Module with Dual 1x4 Configuration and SMA Connections
$77123.5 \mathrm{GHz} 50 \Omega$ RF Module with Dual 1x4 Configuration and SMA Connections

These products are available with an Extended Warranty.
1.888.KEITHLEY (u.s. only)
www.keithley.com

Multimeter/Data Acquisition/ Switch Systems

Rugged 50-pin D-sub connectors ensure dependability and quick setup/teardown in production test racks.

Screw terminals use oversize connectors for easier, mistake-free wiring. Easy-to-use removable terminals are available on some models.

Software Solutions

Whether the task calls for a simple start-up package to acquire several channels of data or the tools to create a fully custom acquisition and analysis solution, Keithley has the software needed to get the most performance from a Model 2700, 2701, or 2750 Multimeter/Switch System. Our broad range of software solutions makes it easy to get applications "Up \& Running" quickly and economically.

Measurement Ranges for the Integra Series Systems

Multimeter/Data Acquisition/ Switch Systems

Important Features and Benefits

- Full per-channel configurability-Each channel can be independently configured for making measurements. The parameters that can be chosen for each channel include speed, range, resolution, number of power line cycles (NPLC), filtering type, offset compensation, math functions to be displayed, CJC type, RTD type, frequency gate time, " m " and "b" values in $m X$ + b format, HI/LO limits, low Ω (Model 2750 only), ratio calculation, and thermistor type.
- Channel monitor feature-Monitor any specific input channel on the front panel display during a scan. This feature can also serve as an analog trigger to initiate a scan sequence based on some external factor, such as a temperature rising above a preset limit. Only the data of interest is acquired, so there's no need to spend hours searching through reams of normal readings to find anomalous data.
- Front/rear switch-Switching between the front and rear panel measurement inputs is as easy as pressing a button. Users can select the front panel inputs for tasks such as system set-up and verification, manual probing, troubleshooting, and calibration, while the rear panel inputs through the modules allow fast, automated multiplexing and control.
- Battery-backed set-up memory-Up to four different set-up configurations can be stored in onboard memory. If the line power fails during a scan, the system will resume scanning where it stopped once power is restored.
- Relay counting-Provides preventive maintenance of the system and switches.
- Memory buffer-The mainframe's non-volatile wrap-around reading memory allows continuous, unattended datalogging over long periods-data in the buffer can be transferred to a PC controller automatically as new data is acquired. The real-time clock can be used to time- and date-stamp readings for later review and interpretation.
- 2 TTL-level digital inputs-For implementing external triggers to initiate a scan sequence.
- 5 "per-channel" HI/LO alarm limit TTL outputs -Trigger external alarms or perform other control functions without a PC controller.
- Dry circuit ohms (20 mV clamp)-Protects sensitive devices from damage and prevents self-heating errors during testing (Model 2750 only).
- Virtual channel-Stores the results of channel-to channel ratio and average math operations.
- Onboard statistical analysis-Mathematical functions available at the push of a button are channel average, $m \mathrm{X}+\mathrm{b}$ scaling, minimum, maximum, average, and standard deviation.
- GPIB and RS-232 interfaces (Models 2700 and 2750)
- Ethernet and RS-232 interface (Model 2701 only)
- 3-year warranty

Which Integra Mainframe is the Best Choice for the Application?

Use this selector guide to decide which Integra Series mainframe offers the combination of features and capacity that's right for a specific application. If testing requirements change in the future, switch/control modules and test code can be easily re-used.

	$\mathbf{2 7 0 0}$	$\mathbf{2 7 0 1}$	$\mathbf{2 7 5 0}$
No. of differential input channels	80	80	200
Matrix crosspoints	96	96	240
Ohms resolution	$100 \mu \Omega$	$100 \mu \Omega$	$1 \mu \Omega$
Dry circuit ohms (20mV clamp)	No	No	Yes
No. of slots	2	2	5
Memory buffer	55,000 rdgs	450,000 rdgs	110,000 rdgs
Size (2U height)	Half-rack width	Half-rack width	Full-rack width (19")
Communications	GPIB, RS-232	Ethernet, RS-232	GPIB, RS-232
Scan-Rate (memory)	$180 / \mathrm{s}$	$500 / \mathrm{s}$	$230 / \mathrm{s}$
Scan-Rate (bus)	$145 / \mathrm{s}$	$440 / \mathrm{s}$	$210 / \mathrm{s}$
Max. Internal Trigger Rate	$2000 / \mathrm{s}$	$2800 / \mathrm{s}$	$2000 / \mathrm{s}$
Max. External Trigger Rate	$375 / \mathrm{s}$	$2000 / \mathrm{s}$	$375 / \mathrm{s}$

2700, 2701, 2750

Multimeter/Data Acquisition/ Switch Systems

DC CHARACTERISTICS ${ }^{1}$
CONDITIONS: MED (1 PLC) ${ }^{2}$ or 10 PLC or MED (1 PLC) with Digital Filter of 10

Channel (Ratio) ${ }^{10}$
Ratio Accuracy = Accuracy of selected Channel Range + Accuracy of Paired Channel Range
Channel (Average) ${ }^{10}$
Average Accuracy $=$ Accuracy of selected Channel Range + Accuracy of Paired Channel Range

TEMPERATURE ${ }^{19}$
(Displayed in ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$, or K . Exclusive of probe errors.)
Thermocouples (Accuracy based on ITS-90.)

TYPE	RANGE	RESOLUTION	90 DAY/1 YEAR RELATIVE TO SIMULATED REFERENCE JUNCTION	$\begin{gathered} \left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right) \\ \text { USING } \\ 77 \mathrm{XX} \\ \text { MODULE } \end{gathered}$	$\begin{aligned} & \text { TEMPERATURE EMEFFICNE } \\ & \text { COEFICIENT } \\ & 0^{\circ}-18^{\circ} 8^{\circ}-50^{\circ} \mathrm{C} \end{aligned}$
J	-200 to $+760^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$0^{0.03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}}$
к	-200 to $+1372^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	$0.03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
N	-200 to $+1300^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	$0.03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
T	-200 to $+400^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	$0.03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
E	-200 to $+1000^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	$0.03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
R	0 to $+1768^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.88^{\circ} \mathrm{C}$	$0.03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
S	0 to $+1768^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	$0.03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
B	+350 to $+1820^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	$0.03^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

* Using 7710 Module: J: $2.5^{\circ} \mathrm{C}$; K: $1^{\circ} \mathrm{C} . \mathrm{N}, \mathrm{T}, \mathrm{E}$ Types: $1.5^{\circ} \mathrm{C} . \mathrm{R}, \mathrm{S}, \mathrm{B}$ Types: $2.7^{\circ} \mathrm{C}$.

4-Wire RTD:

(100Ω platinum [PT100], D100, F100, PT385, PT3916, or user type. Offset compensation On)

-200° to $630^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$	$0.06^{\circ} \mathrm{C}$	$0.003^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
Thermistor: $(2.2 \mathbf{k} \Omega, 5 \mathbf{k} \Omega \text {, and } 10 \mathrm{k} \Omega)^{20}$			
-80° to		$150^{\circ} \mathrm{C}$	$0.01{ }^{\circ} \mathrm{C}$

DC SYSTEM SPEEDS ${ }^{15,18}$

	$2700 / 2750$	2701
RANGE CHANGES (excludes 4W $\Omega)^{16}:$	$50 / \mathrm{s}(42 / \mathrm{s})$	$50 / \mathrm{s}(42 / \mathrm{s})$
FUNCTION CHANGES $^{16}:$	$50 / \mathrm{s}(42 / \mathrm{s})$	$50 / \mathrm{s}(42 / \mathrm{s})$
AUTORANGE TIME $^{16}:$	$<30 \mathrm{~ms}$	$<30 \mathrm{~ms}$
ASCII READINGS TO RS-232 (19.2k BAUD):	$55 / \mathrm{s}$	$300 / \mathrm{s}$
MAX. EXTERNAL TRIGGER RATE:	$375 / \mathrm{s}$	$2000 / \mathrm{s}$

DC MEASUREMENT SPEEDS ${ }^{15}$
Single Channel, $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ Operation

FUNCTION	DIGITS	READI	NGS/s	PLC	
DCV, DCI, Ω (<10M),	$6.5{ }^{12,16}$	5	(4)	10	
Thermocouple,	$6.5{ }^{16}$	35	(28)	1	
Thermistor	$6.5{ }^{12,16}$	45	(36)	1	
	$5.5{ }^{12,16}$	150	(120)	0.	
	$5.5{ }^{16,17}$	300	(240)	0.	
	$5.5{ }^{17}$	500	(400)	0.	
2701 and 2750 only	$4.5{ }^{17}$	2500	(2000)		
2701 only	3.5	3500	(2800)		. 02
4W Ω (<10M)	$6.5{ }^{16}$	1.4	(1.1)	10	
	$6.5{ }^{16}$	15	(12)	1	
	$5.5{ }^{17}$	33	(25)	0.	
4W Ω OComp, RTD ${ }^{22}$	$6.5{ }^{16}$	0.9	(0.7)	10	
	$6.5{ }^{16}$	8	(6.4)	1	
	$5.5{ }^{16,17}$	18	(14.4)	0.	
Channel (Ratio),	$6.5{ }^{16}$	2.5	(2)	10	
Channel (AVG)	$6.5{ }^{16}$	15	(12)	1	
	$5.5{ }^{17}$	25	(20)	0.1	
Multiple Channels, Into Memory ${ }^{18}$			Channels/s		
			2700	2701	2750
7710 Scanning DCV			180/s	500/s	230/s
7710 Scanning DCV with	or Time St		170/s	500/s	230/s
7710 Scanning DCV alte	$2 \mathrm{~W} \Omega$		45/s	115/s	60/s

Multiple Channels, Into and Out of Memory to GPIB ${ }^{16,18}$
or Ethernet Channels/s

	2700	2701	2750
7702 Scanning DCV	$65 / \mathrm{s}$	$75 / \mathrm{s}$	$65 / \mathrm{s}$
7700 and 7708 Scanning Temperature (T/C)	$50 / \mathrm{s}$	$50 / \mathrm{s}$	$50 / \mathrm{s}$
7710 Scanning DCV	$145 / \mathrm{s}$	$440 / \mathrm{s}$	$210 / \mathrm{s}$
7710 Scanning DCV with Limits or Time Stamp On	$145 / \mathrm{s}$	$440 / \mathrm{s}$	$210 / \mathrm{s}$
7710 Scanning DCV alternating 2W Ω	$40 / \mathrm{s}$	$115 / \mathrm{s}$	$55 / \mathrm{s}$

1.888.KEITHLEY (u.s. only)

DC SPEED vs. NOISE REJECTION

			RMS Noise					
10V Range								
Rate	Filter	Readings/s ${ }^{12}$	Digits	2700,2750	2701	NMRR $^{\prime}$	CMRR 14	
10	50	$0.1(0.08)$	6.5	$<1.2 \mu \mathrm{~V}$	$<2.5 \mu \mathrm{~V}$	$110 \mathrm{~dB}^{13}$	140 dB	
1	Off	$15(12)$	6.5	$<4 \mu \mathrm{~V}$	$<6 \mu \mathrm{~V}$	$90 \mathrm{~dB}^{13}$	140 dB	
0.1	Off	$500(400)$	5.5	$<22 \mu \mathrm{~V}$	$<40 \mu \mathrm{~V}$	-	80 dB	
0.01	Off	$2500(2000)$	4.5	$<150 \mu \mathrm{~V}$	$<300 \mu \mathrm{~V}$	-	80 dB	
0.002	Off	$3500(2800)$	3.5	-	$<1 \mathrm{mV}$	-	60 dB	

DC MEASUREMENT CHARACTERISTICS

DC VOLTS

A-D LINEARITY: 2.0 ppm of reading +1.0 ppm of range.
INPUT IMPEDANCE:
$100 \mathrm{mV}-10 \mathrm{~V}$ Ranges: Selectable $>10 \mathrm{G} \Omega / /$ with $<400 \mathrm{pF}$ or $10 \mathrm{M} \Omega \pm 1 \%$.
100V, 1000V Ranges: $10 \mathrm{M} \Omega \pm 1 \%$.
Dry Circuit: $100 \mathrm{k} \Omega \pm 1 \% / /<1 \mu \mathrm{~F}$.
EARTH ISOLATION: 500 V peak, $>10 \mathrm{G} \Omega$ and $<300 \mathrm{pF}$ any terminal to chassis. INPUT BIAS CURRENT: <75 pA at $23^{\circ} \mathrm{C}$
COMMON MODE CURRENT: $<500 \mathrm{nApp}$ at 50 Hz or 60 Hz .
AUTOZERO ERROR: Add $\pm(2 \mathrm{ppm}$ of range error $+5 \mu \mathrm{~V})$ for <10 minutes and $\pm 1^{\circ} \mathrm{C}$. INPUT PROTECTION: 1000 V , all ranges. 300 V with plug in modules.

RESISTANCE

MAXIMUM 4W Ω LEAD RESISTANCE: 80% of range per lead (Dry Ckt mode). 5Ω per lead for 1Ω range; 10% of range per lead for $10 \Omega, 100 \Omega$, and $1 \mathrm{k} \Omega$ ranges; $1 \mathrm{k} \Omega$ per lead for all other ranges.
OFFSET COMPENSATION: Selectable on $4 \mathrm{~W} \Omega, 1 \Omega, 10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$ ranges.
CONTINUITY THRESHOLD: Adjustable 1 to 1000Ω
INPUT PROTECTION: 1000 V , all Source Inputs, 350 V Sense Inputs. 300 V with plug-in modules.

DC CURRENT

SHUNT RESISTORS: $100 \mathrm{~mA}-3 \mathrm{~A}, 0.1 \Omega .20 \mathrm{~mA}, 5 \Omega$.
INPUT PROTECTION: 3A, 250v fuse.

THERMOCOUPLES

CONVERSION: ITS-90.

REFERENCE JUNCTION: Internal, External, or Simulated (Fixed).
OPEN CIRCUIT CHECK: Selectable per channel. Open $>11.4 \mathrm{k} \Omega \pm 200 \Omega$.

DC NOTES

1. 20% overrange except on 1000 V and 3 A .
2. Add the following to "ppm of range" uncertainty; $100 \mathrm{mV} 15 \mathrm{ppm} ; 1 \mathrm{~V}$ and 100 V 2 ppm ; for Model 27501Ω and Dry Circuit $\Omega 40 \mathrm{ppm} ; 10 \rightarrow 1 \mathrm{M} \Omega 2 \mathrm{ppm}$, for Models $2700 / 2701100 \Omega 30 \mathrm{ppm}, 20 \mathrm{~mA}$ and $1 \mathrm{~A} 10 \mathrm{ppm}, 100 \mathrm{~mA} 40 \mathrm{ppm}$.
3. $\pm 2 \%$ (measured with $10 \mathrm{M} \Omega$ input resistance $\mathrm{DMM},>10 \mathrm{G} \Omega \mathrm{DMM}$ on $10 \mathrm{M} \Omega$ and $100 \mathrm{M} \Omega$ ranges). For Dry Circuit $\Omega, \pm 25 \%$ with Input HI connected to Sense HI; with Sense HI disconnected add 30 mV .
4. Relative to calibration accuracy.
5. For signal levels $>500 \mathrm{~V}$, add $0.02 \mathrm{ppm} / \mathrm{V}$ uncertainty for portion exceeding 500 V .
6. Specifications are for 4 -wire $\Omega, 1 \Omega, 10 \Omega$, and 100Ω with offset compensation on. With 77 XX plug-in modules, LSYNC on. With offset compensation on, OPEN CKT. VOLTAGE is 12.8 V . For 2 -wire Ω add 1.5Ω to "ppm of range" uncertainty. 1Ω range is 4 -wire only.
7. Must have 10% matching of lead resistance in Input HI and LO .
8. Add the following to "ppm of reading" uncertainty when using plug in modules:

	$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	$100 \mathrm{M} \Omega$
All Modules:				220 ppm	2200 ppm
$\mathbf{7 7 0 1 , 7 7 0 3 , 7 7 0 7 , 7 7 0 9 \text { Modules: }}$	10 ppm	100 ppm	1000 ppm	1%	10%
$7706,7708,7710$ Modules:	5 ppm	50 ppm	500 ppm	5000 ppm	5%
$\mathbf{7 7 1 0 ~ M o d u l e ~} \mathbf{2 3}{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}:$	11 ppm	110 ppm	1100 ppm	1.1%	11%

9. Add 1.5 V when used with plug in modules.
10. For RATIO, DCV only. For AVERAGE, DCV and Thermocouples only. Available with plug in modules only.
11. Add $6 \mu \mathrm{~V}$ to "of range" uncertainty when using Models 7701,7703 , and 7707 , and $3 \mu \mathrm{~V}$ for Models 7706 and 7709 .
12. Auto zero off.
13. For LSYNC On, line frequency $\pm 0.1 \%$. For LSYNC Off, use 60 dB for ≥ 1 PLC.
14. For $1 \mathrm{k} \Omega$ unbalance in LO lead. AC CMRR is 70 dB .
15. Speeds are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions (*RST). Autorange off, Display off, Limits off, Trigger delay $=0$.
16. Speeds include measurements and binary data transfer out the GPIB or ASCII data transfer for Ethernet and RS-232 (reading element only).
17. Sample count $=1000$, auto zero off (into memory buffer).
18. Auto zero off, NPLC $=0.01$ (Models 2700 and 2750), NPLC $=0.002$ (Model 2701).

Type	Range	Front Terminals Simulated Ref. Junction	7709 Simulated Ref. Junction	7701, 7703, 7707 Simulated Ref. Junction	7700, 7708, 7710 Using CJC	7706 Using CJC
J	-200 to $0^{\circ} \mathrm{C}$	0.1	0.1	0.3	0.8	1.6
K	-200 to $0^{\circ} \mathrm{C}$	0.2	0.2	0.4	0.8	1.6
N	-200 to $0^{\circ} \mathrm{C}$	0.3	0.3	0.6	0.8	1.6
T	-200 to $0^{\circ} \mathrm{C}$	0.2	0.1	0.4	0.8	1.6
E	-200 to $0^{\circ} \mathrm{C}$	-	0.1	0.3	0.8	1.6
R	0 to $+400^{\circ} \mathrm{C}$	0.4	0.6	1.2	0.5	1.0
S	0 to $+400^{\circ} \mathrm{C}$	0.4	0.6	1.2	0.5	1.0
B	+350 to $+1100^{\circ} \mathrm{C}$	0.8	0.3	1.7	0.5	1.0

20. For lead resistance $>0 \Omega$, add the following uncertainty $/ \Omega$ for measurement temperatures of:

	$70^{\circ}-100^{\circ} \mathrm{C}$	$100^{\circ}-150^{\circ} \mathrm{C}$
$\mathbf{2 . 2} \mathbf{~ k} \Omega$	(44004)	$0.22^{\circ} \mathrm{C}$
$\mathbf{5 . 0} \mathrm{k} \Omega$	(44007)	$0.10^{\circ} \mathrm{C}$
$\mathbf{1 0} \mathrm{k} \Omega$	(44006)	$0.04^{\circ} \mathrm{C}$

21. For 4 -wire Ω only, offset compensation on, LSYNC on.
22. For Dry Circuit $1 \mathrm{k} \Omega$ range, 2 readings $/ \mathrm{s}$ max.
23. For 2750 Front Inputs, add the following to Temperature Coefficient "ppm of reading" uncertainty: $1 \mathrm{M} \Omega 25 \mathrm{ppm}, 10 \mathrm{M} \Omega$ $250 \mathrm{ppm}, 100 \mathrm{M} \Omega 2500 \mathrm{ppm}$. Operating environment specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ and $50 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$.
24. Model 2750 only.
25. Front panel resolution is limited to 0.1Ω.

AC SPECIFICATIONS ${ }^{1}$

Function	Range	Resolution	Calibration Cycle	Accuracy: \pm (\% of reading $+\%$ of range), $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$				
				$\begin{aligned} & 3 \mathrm{~Hz} \\ & 10 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 20 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 20 \mathrm{kHz}- \\ 50 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 50 \mathrm{kHz}- \\ & 100 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \hline 100 \mathrm{kHz}- \\ & 300 \mathrm{kHz} \end{aligned}$
Voltage ${ }^{2}$	$\begin{aligned} & 100.0000 \mathrm{mV} \\ & 1.000000 \mathrm{~V} \end{aligned}$	$\begin{array}{ll} \hline 0.1 & \mu \mathrm{~V} \\ 1.0 & \mu \mathrm{~V} \end{array}$	90 Days (all ranges)	$0.35+0.03$	$0.05+0.03$	$0.11+0.05$	$0.6+0.08$	$4.0+0.5$
	$\begin{array}{rc} 10.00000 & \mathrm{~V} \\ 100.0000 & \mathrm{~V} \\ 750.000 & \mathrm{~V} \end{array}$	$\begin{array}{r} 10 \mu \mathrm{~V} \\ 100 \mu \mathrm{~V} \\ 1.0 \mu \mathrm{~V} \end{array}$	$\begin{gathered} 1 \text { Year } \\ \text { (all ranges) } \end{gathered}$	$0.35+0.03$	$0.06+0.03$	$0.12+0.05$	$0.6+0.08$	$4.0+0.5$
			(Temp. Coeff.) $/{ }^{\circ}{ }^{3}$	$0.035+.003$	$0.005+.003$	$0.006+.005$	$0.01+.006$	$0.03+.01$
Current ${ }^{2}$	$\begin{array}{rl} 1.000000 & \mathrm{~A} \\ 3.00000 & \mathrm{~A}^{14} \end{array}$	$\begin{gathered} 1.0 \mu \mathrm{~A} \\ 10 \end{gathered}$	90 Day/1 Yr.	$\begin{gathered} 3 \mathrm{~Hz}-10 \mathrm{~Hz} \\ 0.30+0.04 \\ 0.35+0.06 \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz}-3 \mathrm{kHz} \\ 0.10+0.04 \\ 0.16+0.06 \end{gathered}$	$\begin{gathered} 3 \mathrm{kHz-5} \mathrm{kHz} \\ 0.14+0.04 \\ 0.18+0.06 \end{gathered}$		
			(Temp. Coeff.) $/{ }^{\circ}{ }^{3}$	$0.035+0.006$	$0.015+0.006$			
Frequency ${ }^{4}$ and Period	$\begin{array}{cc} 100 \mathrm{mV} \\ & \begin{array}{c} \mathrm{t} \\ \text { to } \\ 750 \\ \mathrm{~V} \end{array} \end{array}$	0.333 ppm 3.33 ppm 33.3 ppm	90 Day/ 1 Yr.	($3 \mathrm{~Hz}-500 \mathrm{kHz}$) ($333 \mathrm{~ms}-2 \mu \mathrm{~s}$) $100 \mathrm{ppm}+0.333 \mathrm{ppm}$ (SLOW, 1s gate) $100 \mathrm{ppm}+3.33 \mathrm{ppm}$ (MED, 100 ms gate) $100 \mathrm{ppm}+33.3 \mathrm{ppm}$ (FAST, 10 ms gate)				

1.888.KEITHLEY (u.s. only)

2700, 2701, 2750

Multimeter/Data Acquisition/ Switch Systems

ADDITIONAL UNCERTAINTY \pm (\% OF READING)				
Low Frequency Uncertainty		MED		FAST
$20 \mathrm{~Hz}-30 \mathrm{~Hz}$		0.3		-
$30 \mathrm{~Hz}-\quad 50 \mathrm{~Hz}$		0		-
$50 \mathrm{~Hz}-100 \mathrm{~Hz}$		0		1.0
$100 \mathrm{~Hz}-200 \mathrm{~Hz}$		0		0.18
$200 \mathrm{~Hz}-300 \mathrm{~Hz}$		0		0.10
$>300 \mathrm{~Hz}$		0		0
CREST FACTOR: ${ }^{5}$	1-2	2-3	3-4	4-5
Additional Uncertainty:	0.05	0.15	0.30	0.40
Max. Fundamental Freq.:	50 kHz	50 kHz	3 kHz	1 kHz
Maximum Crest Factor: 5 at full	-scale.			

AC MEASUREMENT CHARACTERISTICS

AC VOLTS

measurement method: ac-coupled, True RMS.
INPUT IMPEDANCE: $1 \mathrm{M} \Omega \pm 2 \% / / \mathrm{by}<100 \mathrm{pF}$.
INPUT PROTECTION: 1000 V p or 400 VDC . 300 Vrms with plug in modules.

AC CURRENT

measurement method: ac-coupled, True RMS.
SHUNT RESISTANCE: 0.1Ω.
BURDEN VOLTAGE: $1 \mathrm{~A}<0.5 \mathrm{Vrms}, 3 \mathrm{~A}<1.5 \mathrm{Vrms}$. Add 1.5 Vrms when used with plug in modules.
INPUT PROTECTION: 3A, 250V fuse

FREQUENCY AND PERIOD

MEASUREMENT METHOD: Reciprocal counting technique.
GATE TIME: SLOW 1 s , MED 100 ms , and FAST 10 ms .

AC GENERAL

AC CMRR ${ }^{6}$: 70 dB .
VOLT HERTZ PRODUCT: $<=8 \times 10^{7}$.
AC MEASUREMENT SPEEDS ${ }^{7,13}$

Single Channel, $\mathbf{6 0 H z} \mathbf{(5 0 H z)}$ Operation				
Function	Digits	Readings/s	Rate	Bandwidth
ACV, ACI	6.5	$2 \mathrm{~s} /$ Reading	SLOW	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
	6.5	$4.8(4)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	6.5^{9}	$40(32)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
Frequency,	6.5	$1(1)$	SLOW	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
Period	5.5	$9(9)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	4.5	$35(35)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
	4.5^{10}	$65(65)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$

Multiple Channel
7710 SCANNING ACV ${ }^{10,11}$: 500/s.
7710 SCANNING ACV WITH AUTO DELAY ON : $2 \mathrm{~s} /$ reading
AC SYSTEM SPEEDS ${ }^{7,9,11}$

	$2700 / 2750$	2701
AC System Speed:	$(19.2 \mathrm{k})$	$(115.2 \mathrm{~K})$
Range Changes: 12	$4 / \mathrm{s}(3 / \mathrm{s})$	$4 / \mathrm{s}(3 / \mathrm{s})$
Function Changes:		
Autorange Time:	$4 / \mathrm{s}(3 / \mathrm{s})$	$4 / \mathrm{s}(3 / \mathrm{s})$
ASCII Readings to RS-232 (19.2k baud):	$<3 \mathrm{~s}$	$<3 \mathrm{~s}$
Max. External Trigger Rate:	$50 / \mathrm{s}$	$300 / \mathrm{s}$

AC NOTES

1.20% overrange except on 750 V and 3 A .
2. Specification are for SLOW mode and sine wave inputs $>5 \%$ of range. SLOW and MED are multi-sample AD conversions.

FAST is DETector:BANDwidth 300 with nPLC $=1.0$.
3. Applies to $0^{\circ}-18^{\circ} \mathrm{C}$ and $28^{\circ}-50^{\circ} \mathrm{C}$.
4. For square wave inputs $>10 \%$ of ACV range, except 100 mV range. 100 mV range frequency must be $>10 \mathrm{~Hz}$ if input is $<20 \mathrm{mV}$. 5. Applies to non-sine waves $>5 \mathrm{~Hz}$.

6 . For $1 \mathrm{k} \Omega$ unbalance in LO lead.
7. Speeds are for $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ operation using factory defaults operating conditions (*RST). Autorange off, Display off, Limits off, Trigger delay $=0$..
8. For ACV inputs at frequencies of 50 or $60 \mathrm{~Hz}(\pm 10 \%)$, add the following to "\% of Range" uncertainty: $100 \mathrm{mV} 0.25 \%$, 1V $0.05 \%, 10 \mathrm{~V} 0.13 \%, 100 \mathrm{~V} 0.03 \%, 750 \mathrm{~V} 0.015$ (Model 2701 only).
9. Auto Zero off.
10. Sample count $=1024$
11. DETector:BANDwidth 300 with nPLC $=0.006$ (2701 only).
12. Maximum useful limit with trigger delay $=175 \mathrm{~ms}$.
13. Includes measurement and binary data transfer out GPIB or ASCII data transfer for Ethernet and RS-232 (Reading Element only),

GENERAL SPECIFICATIONS:

EXPANSION SLOTS: 2 (2700, 2701), 5 (2750).
POWER SUPPLY: $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V} \pm 10 \%$.
LINE FREQUENCY: 45 Hz to 66 Hz and 360 Hz to 440 Hz , automatically sensed at power-up.
POWER CONSUMPTION: 28VA (2700), 80VA (2701, 2750).
OPERATING ENVIRONMENT: Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Specified to $80 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
BATTERY: Lithium battery-backed memory, 3 years @ $23^{\circ} \mathrm{C}$ (Models 2700, 2750) Lithium Ion battery-backed memory, 30 days of buffer storage @ $23^{\circ} \mathrm{C}$ and >4 hours charge time. Battery lifetime: >3 years @ $23^{\circ} \mathrm{C}$, >1.5 years @ $50^{\circ} \mathrm{C}$ (Model 2701)
WARRANTY: 3 years excludes battery.
EMC: Conforms to European Union Directive 89/336/EEC EN61326-1.
SAFETY: Conforms to European Union Directive 73/23/EEC EN61010-1, CAT I.
VIBRATION: MIL-PRF-28800F Class 3, Random.
WARM-UP: 2 hours to rated accuracy.
DIMENSIONS:
Rack Mounting: 89 mm high $\times 213 \mathrm{~mm}$ wide $(2700,2701$) or 485 mm wide $(2750) \times 370 \mathrm{~mm}$ deep $(3.5 \mathrm{in} \times$ 8.375 in or $19 \mathrm{in} \times 14.563 \mathrm{in}$).

Bench Configuration (with handle and feet): 104 mm high $\times 238 \mathrm{~mm}$ wide $(2700,2701$) or 485 mm wide $(2750) \times 370 \mathrm{~mm}$ deep $(4.125$ in $\times 9.375$ in $(2700,2701)$ or 19 in $(2750) \times 14.563 \mathrm{in})$.
SHIPPING WEIGHT: 6.5 kg (14 lbs .) $(2700,2701$) or $13 \mathrm{~kg}(28 \mathrm{lbs}).(2750)$.
DIGITAL I/O: 2 inputs, 1 for triggering and 1 for hardware interlock.
5 outputs, 4 for Reading Limits and 1 for Master Limit. Outputs are TTL compatible or can sink 250 mA , diode clamped to 40 V .
TRIGGERING AND MEMORY:
Window Filter Sensitivity: $0.01 \%, 0.1 \%, 1 \%, 10 \%$, or Full-scale of range (none).
Reading Hold Sensitivity: $0.01 \%, 0.1 \%, 1 \%$, or 10% of reading.
Trigger Delay: 0 to 99 hrs (1 ms step size).
External Trigger Delay: $<2 \mathrm{~ms}(2700),<1 \mathrm{~ms}(2701,2750)$.
External Trigger Jitter: <1ms (2700), $<500 \mu \mathrm{~s}(2701),<500 \mu \mathrm{~s}(2750)$.
Memory Size: 55,000 readings (2700), 450,000 readings (2701), 110,000 readings (2750).
MATH FUNCTIONS: Rel, Min/Max/Average/Std Dev/Peak-to-Peak (of stored reading), Limit Test, \%, 1/x, and $\mathrm{mX}+\mathrm{b}$ with user defined units displayed.
REMOTE INTERFACE:
GPIB (IEEE-488.2) (2700,2750), RS-232C (2700,2701 , and 2750).
Ethernet TCP/IP (10bT and 100bT) (2701)
SCPI (Standard Commands for Programmable Instruments)
LabVIEW Drivers
ACCESSORIES SUPPLIED: Model 1751 Safety Test Leads, Product Informtion CD-ROM. (Model 2701 only:
Getting Started Foldout, 3 m Ethernet crossover cable, software CD-ROM with IVI/VISA drivers for VB,
VC/C++, LabVIEW, TestPoint, and LabWindows/CVI, plus free runtime start-up software.)
ACCESSORIES AVAILABLE:
4288-7Rack Mount Rear Support Kit (2750)
$77 \mathrm{XX}-904 \mathrm{~A}$ Module Manual
77XXModules
Extended Warranty
ExceLINX-1A (Excel add-in datalogger software)
TestPoint ${ }^{\text {TM }}$ Software Development Package
FOR MODEL 2701:
Ethernet: RJ-45 connector, TCP/IP, 10bT and 100bTx autosensed.
IP Configuration: Static or DHCP.
Password Protection: 11 Characters.
Software: Windows 98, NT, 2000, ME, and XP compatible. Internet Explorer 5.0 or higher required. Web page server by 2701 .

1.888.KEITHLEY (u.s. only)

2700, 2701, 2750

Multimeter/Data Acquisition/ Switch Systems

Switch/Control Module Capabilities

All plug-in modules are compatible with the two-slot Model 2700 and Model 2701 Multimeter/Data Acquisition Systems and the five-slot Model 2750 Multimeter/Switch System. When the application's needs change, simply change modules. Integra systems reconfigure themselves automatically.

Module Capabilities Overview												
	7700	7701	7702	7703	7705	7706	7707	7708	7709	7710	7711	7712
DC Volts	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
DC Current	\checkmark		\checkmark									
Temperature												
T/C w/Automatic CJC	\checkmark					\checkmark		\checkmark		\checkmark		
T/C w/External CJC	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
RTD	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Thermistor	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Resistance (2-or 4-wire)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Continuity	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
AC Volts	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
AC Current	\checkmark		\checkmark									
Frequency	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Event Counter/Totalizer						\checkmark						
Signal Routing/Control	\checkmark											
Digital Input							\checkmark					
Digital Output						\checkmark	\checkmark					
Analog Output						\checkmark						
RF Switching											\checkmark	\checkmark

